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Abstract

A method is proposed in this paper for model identification and order response prediction for bladed wheels. This

method makes use of measured blade tip-to-blade tip frequency response functions of a mistuned wheel and assumes

responses of the wheel subject to order excitations to be a weighted sum of a number, which is equal to the number of

the blades, of modes of the corresponding tuned wheel. The model for the mistuned wheel is identified in terms of the

scale-reduced mass and stiffness matrices from which an expression for order responses is derived. The method is validated

by comparing order responses calculated using this method with those from the original equation for two wheel models, a

lumped parameter model and a finite element paddle wheel model. It can be concluded that, using this method, resonance

responses of a mistuned wheel to order excitations at and around the natural frequencies of the first family can be

accurately predicted, even mistuning is large. From the order responses the strain levels in the blades can be evaluated and

the suitability for the wheel to be released for field use can be assessed.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Bladed wheels are generally designed to be a cyclically symmetric structure. In reality however, due to
casting process, machining tolerances and non-uniform wear in services, there are always variations in
geometry and material property between blades. This phenomenon is called mistuning and a bladed wheel
having mistuning is a mistuned wheel. Mistuning is random in nature and unavoidable in practice.

For a cyclically symmetric (or tuned) structure consisting of N identical sectors, vibration modes can be
grouped [1] by the nodal-diameter (ND) number n, where n ¼ 0,1,2,yN/2 if N is even or n ¼ 0,1,2,y(N�1)/2
if N is odd. In terms of a cylindrical coordinate system, the mode shapes, ur and ur+1, of the rth and (r+1)th
sectors are related by ur+1

¼ ein2p/Nur for the n-ND modes, where i ¼
ffiffiffiffiffiffiffi
�1
p

. This shows a travelling wave
pattern which extends to all the sectors. A natural frequency associating with a ND number different from
zero and N/2 (where N is even) repeats itself. Rotating in a housing and subject to aerodynamic excitations,
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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the blades have the same vibration amplitude. For a cyclically symmetric structure, dynamic analysis can be
performed using a single sector with degrees of freedom much less than the whole structure [2].

The presence of mistuning in a bladed wheel generally invalidates those tuned dynamic features. A mistuned
wheel may exhibit vibration localisation and amplification, in which few blades have responses much greater
than those of other blades and the tuned response (the response of the corresponding tuned wheel under the
same order excitation). As a result, mistuning not only significantly reduces the high cycle fatigue (HCF) life of
the wheel, but also makes it difficult to predict (due to the lack of knowledge of actual properties of the blades)
or measure (due to not knowing which blade in which wheel is the most responsive) the representative
response. Those mistuning effects are observed not only on large bladed-disks found in aero-engines, but also
on small radial turbine wheels used in turbochargers. Since the latter are manufactured by casting and
machining, mistuning is produced more possibly by blade-to-blade variations in material property.

To predict the response of an individual mistuned wheel, parameters (material properties and blade
geometries) specific to this wheel must be known and they are different, although in general not significantly,
from the design or tuned values. Thus mistuning identification has been and will still be an important research
topic. Mistuning may be investigated from a statistical point of view due to its random nature. Statistical
quantities, such as mean, standard deviation and even distribution, may be produced from responses of a large
number of wheel samples of the same design and production. This requires calculations and/or measurements
to be carried out for up to several thousands times. Such a task cannot be accomplished by either
measurement or using conventional numerical methods (normally the finite element method (FEM)) which
model the whole wheel with too many degrees of freedom. This has provoked another research topic, i.e.
computationally efficient modelling for mistuned wheels. The response of a wheel is a nonlinear function of
wheel parameters. Since a tuned wheel has repeated natural frequencies and mistuning is a perturbation to this
tuned system, it may be expected that the response of the wheel does not continuously change when the wheel
parameters change from the designed, tuned point. This observation has brought in the idea of intentional
mistuning, in hope that the unwanted effect of random, uncontrollable mistuning is depressed to a required
extent by the intentional, controllable mistuning.

Mistuning in bladed wheels has been studied for over 30 years in order to resolve some of the
aforementioned issues. A recent (up to 2005) and thorough review can be found in Ref. [3]. Different
techniques have been developed to produce an order-reduced model. Refs. [4–6] represent a mistuned system
using a lumped parameter model consisting of masses and springs. Such a model has a high computational
efficiency and is useful to qualitatively investigate mistuning effect, but difficult to predict stresses and strains
which are the main concern in HCF of the mistuned wheel. Refs. [7–9] model a mistuned system using the
Component Mode Synthesis technique in which the first few modes, which are produced using FEM, of each
sector (substructure) of the system are employed to capture vibration of the whole system. In addition to the
sub-structural modes of a mistuned system, the modes of the corresponding tuned system (called tuned modes)
have also been used to synthesise the vibration of the mistuned system [10]. Ref. [11] combines recipes in the
above two approaches, introducing a method which makes use of both tuned system modes and blade
component modes to generate an order-reduced model. Other efficient modelling approaches are also
attempted, see e.g. [12,13].

Though statistics may be performed using an order-reduced model, mistuning identification for individual
mistuned wheels is still appealing. Mistuning is identified normally from some, often inadequate, measured
data, leaving the problem indeterminate. To obtain a set of unique parameters (these parameters can be blade
mass matrices, blade stiffness matrices and blade frequencies, etc.), extra conditions must be assumed. Two
mistuning identification methods are suggested in Refs. [14,15] in which blades are represented by multi-mass-
spring systems coupled with each other and the hub is rigid and fixed. The first, termed the random modal

stiffness approach (RMS), assumes mistuning exists in the stiffness matrices of the blades only. It is further
assumed that the mistuned modal shapes are not significantly different from the tuned ones. Under such
conditions, the mistuned stiffness matrix of a blade can be determined straightforwardly by measuring all the
mistuned blade frequencies (not the bladed disk system frequencies). The second is termed the maximum

likelihood (ML) approach. In this approach, both the mass and stiffness matrices of a blade are allowed to be
mistuned. By assuming a joint probability density function (PDF) for the stiffness and mass matrices, the
mistuned mass and stiffness matrices are estimated under the condition that they give the measured blade



ARTICLE IN PRESS
X. Sheng / Journal of Sound and Vibration 323 (2009) 194–213196
frequencies while at the same time make the PDF maximum. It is illustrated that the ML approach works
better than the RMS approach in terms of the mean and standard deviation of the maximum forced response
of the blades subject to order excitations. The difficulty in using the ML approach is how to choose correctly
the type of the joint PDF and its parameters. It is also a fact that this method is based on the blade alone
frequencies which may not be measurable if the blades cannot be removed from the hub as in turbocharger
turbine wheels.

Another mistuning identification method, presented in Refs. [16,17], is based on the fundamental mistuning
model developed in Ref. [13]. There are four assumptions in the fundamental mistuning model: (a) only a
single, isolated family of modes will be excited; (b) the strain energy of that family’s modes is primarily in the
blades; (c) the family’s natural frequencies are closely spaced; and finally (d) mistuning is small. There is
another assumption in the model which is not stated explicitly: modes in this family can be approximated by a
weighted sum of a number of tuned modes. Based on these assumptions, a number of approximations are also
made in the derivation of the model and the mistuning identification method, which may further limit their
usefulness. To identify mistuning, the mistuned frequencies and modal shapes of that family must be
measured. Mistuning is identified in terms of sector frequency deviations which are specially defined. Once
the mistuning is determined, the model can be used to predict responses to order excitations which mainly
excite that family of modes.

Mistuning effects such as vibration localisation and amplification are demonstrated in some of the
aforementioned references e.g. Refs. [3,9]. The phenomenon of vibration localisation is interpreted in a review
paper [18] using the stability theory and in Ref. [19] using the transfer matrix approach. Ref. [20] discusses the
phenomenon of vibration localisation induced by a crack on a single blade based on a simple wheel model. It is
numerically demonstrated in Ref. [21] that intentional mistuning may be used to depress some of the negative
effects of the random mistuning. Though efforts are made in Ref. [21] to explore the mechanism of intentional
mistuning, a satisfactory explanation has not yet been achieved. A possible route to this may be the use of
singular value decomposition, as shown in Ref. [22].

A bladed wheel is normally operated at high speeds and in a high temperature gas field. The effect of
temperature can be easily accounted for by properly changing material’s Young’s modulus. Centrifugal and
Coliolis forces generated from the wheel rotation may have some impact on the effect of mistuning though
they are generally neglected in previous research. Centrifugal forces may increase (stiffening) or reduce
(softening) the natural frequencies of a non-rotating wheel. In current industrial practices, a scaling factor is
given to the material’s Young’s modulus to account for the combined effect of gas temperature and centrifugal
forces, while no consideration is given to the Coliolis effect. The effect of Coliolis forces on mistuned wheel
vibration has been demonstrated recently in Ref. [23].

This paper presents a method for model identification and order response prediction for bladed assemblies,
especially for small turbocharger turbine wheels in which the blades and the hub are integrated. This method
makes use of measured blade tip-to-blade tip frequency response functions of a mistuned wheel and assumes
responses of the wheel subject to order excitations to be a weighted sum of a number equal to the number of
the blades of modes of the corresponding tuned wheel. The effect of wheel rotation will not be included in this
paper. Detailed formulations of the method are presented in Section 2. Validations of the method are
conducted in Section 3 by comparing order responses calculated using the proposed method and those from
the original equation for a mass-spring bladed wheel model and a FE paddle wheel model. From these results,
conclusions are drawn in Section 4.

2. Model identification and mistuned order responses

2.1. Order reduction of equation of motion

The FE equation of motion of a mistuned bladed wheel of N blades may be written as

ðM0 þ DMÞ €xþ ðK0 þ DKÞx ¼ Q̃eiot, (1)

where matrices M0 and K0 represent the mass and stiffness matrices of the tuned counterpart, DM and DK
describe changes in the mass and stiffness matrices due to mistuning, and Q̃eiot is an order excitation at radian



ARTICLE IN PRESS
X. Sheng / Journal of Sound and Vibration 323 (2009) 194–213 197
frequency o. An order excitation is a loading configuration in which each blade is subject to a pressure
distribution over the blade surface. The pressure distributions are harmonic temporally at the same frequency.
The amplitude magnitude of the pressure distribution on a blade is identical to those on other blades but phase
difference between any pair of consecutive blades is equal to an integer, n, times the angle (2p/N) between
these two blades. The integer n is termed the excitation order. At the nth order, excitation frequency o ¼ nO,
where O is the wheel rotation speed in radians per second. Order excitations are generated from the Fourier
harmonics of the pressure field of the housing. The scale of Eq. (1) is normally large and may be reduced by
expressing mistuned vibration as a weighted sum of a number of N tuned modes, as done in Ref. [13], i.e.

x ¼ ½u1u2; . . . ;uN �be
iot ¼ Ubeiot, (2)

where U ¼ ½u1u2; . . . ;uN � is a matrix formed by uj (j ¼ 1,2,y,N) which are modes of the tuned system and
b is the vector of the weights. M0, K0, U and the corresponding natural frequencies can be calculated using
FEM from the tuned, designed wheel model. In Fig. 1, natural frequencies of a typical turbine wheel (Fig. 2)
with 13 blades are calculated under free–free condition and plotted against ND numbers (from 0 to 6). That
the free–free condition is used is due to the wheel is supported by a floating journal bearing through a small
shaft. Lines are drawn to connect natural frequencies of the same order at different ND numbers, forming
families of modes. The number of modes in a family is equal to the number of blades, since the natural
frequencies corresponding to ND numbers 1 to 6 repeat themselves. Although the frequencies in the first
family (the lowest line) are not necessarily close to each other due to different vibrations of the hub for
different ND numbers (for the 0ND, the hub vibrates torsionally and for the 1ND the hub vibrates
translationally), they are much lower than the second natural frequency of any ND number.

For a mistuned wheel, the concept of ND number cannot strictly apply. However, vibration modes can still
be grouped into families each containing N modes (see Section 3). For conventional turbochargers with a
vane-less housing, the modes in the first family are most concerned since resonant vibration at the natural
frequencies of these modes are greatest and often lead to high cycle fatigue failure. Therefore order responses
of the blades at these frequencies must be accurately predicted, so that whether the wheel can be released for
field use can be assessed. An assumption has been made in writing Eq. (2) that the mistuned vibration forced
by the order excitation Q̃eiot is still within the sub-space spanned by the chosen tuned modes. By doing so, the
mistuned wheel under the order excitation is approximated as a dynamic system having N degrees of freedom.
Since the resonant vibration at the mistuned natural frequencies of the first family is concerned and differences
between frequencies in this family and those in other families are large, the N tuned modes in Eq. (2) may be
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Fig. 1. Natural frequencies of a typical turbine wheel with 13 blades.
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chosen to be the modes in the first family (Fig. 1) of the tuned wheel. The accuracy of doing so is demonstrated
in Section 3.

In what follows, no further assumption or approximation are introduced; this is different from the method
proposed in Refs. [16,17] where, in addition to Eq. (2), a number of approximations are made. Substituting
Eq. (2) into Eq. (1) and pre-multiplying UT, yields

�o2ðM� þUTDMUÞbþ ðK� þUTDKUÞb ¼ UTQ̃, (3)

whereM� ¼ UTM0U and K� ¼ UTK0U are diagonal matrices formed by the modal masses and stiffness of the
tuned system. If UTDMU and UTDKU are known, then forced vibration can be determined by solving Eq. (3).
The task of model identification here is to estimate UTDMU and UTDKU, rather than DM and DK themselves
(estimation of DM and DK should be termed mistuning identification). The matrices UTDMU and UTDKU are
of order N�N and symmetric, therefore the determination of them do not require a large number of
measurements for small radial turbocharger turbine wheels, since blades on a wheel are not too many.

2.2. Model identification

Model and mistuning identifications can be performed only when some measured data are available.
Measured data can be natural frequencies and modal shapes of the mistuned system. Here, use is made of
blade tip-to-blade tip frequency response functions. To do so, frequency response functions are measured for
blade tips. In the measurement, the force and response are required to be applied and measured at a blade tip
and in the direction normal to the blade surface (Fig. 2). A matrix of order N�N, denoted by H̃ðoÞ and
termed the blade tip-to-blade tip frequency response matrix, is formed by these functions. This matrix is
symmetric. For a small radial turbocharger turbine wheel, the number of blades is not too large (e.g. 12), and
the measurement of matrix H̃ðoÞ can be completed relatively quickly by making use of the symmetry of this
matrix. Using the modal testing technique [24], the measurements may be further reduced down to a single row
or column of elements in H̃ðoÞ. When using this technique however, special cautions must be excised owing to
the fact that for a mistuned wheel (this is definitely the case for a tuned wheel, see Introduction), some natural
frequencies may be very close, or even identical, to each other.

Now define the force vector of the rth order excitation in which the forces are applied at the blade tips and
normal to the blade surfaces:

FðtÞ ¼ ðeira1 ; eira2 ; . . . ; eiraN Þ
Teiot ¼ F̃eiot, (4)
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where aj ¼ 2pj/N is the azimuth angle of the jth blade. The global force vector, Q̃, in Eq. (3) can be generated
accordingly. The normal displacement amplitudes of the tips due to this special order excitation can be
calculated from the measured tip-to-tip frequency response matrix H̃ðoÞ, using

q̃ ¼ H̃F̃, (5)

where q̃ ¼ ðq̃ð1Þ; q̃ð2Þ; . . . ; q̃ðNÞÞT is the vector of the normal tip displacement amplitudes.
The tip displacement vector of the sth blade is denoted by ðũðsÞ; ṽðsÞ;wðsÞÞT. According to Eq. (2),

ũðsÞ

ñðsÞ

w̃ðsÞ

8><
>:

9>=
>; ¼

XN

m¼1

bm

jðsÞ1m

jðsÞ2m

jðsÞ3m

8>><
>>:

9>>=
>>;, (6)

where jðsÞ1m, j
ðsÞ
2m and jðsÞ3m are the x-, y- and z-components of the tip displacement of the sth blade in the mth

tuned mode. Now the unit vector normal to the blade surface at the blade tip is denoted by aðsÞ, and from
Eq. (6)

aðsÞT
ũðsÞ

ñðsÞ

w̃ðsÞ

8><
>:

9>=
>; ¼

XN

m¼1

bma
ðsÞT

jðsÞ1m

jðsÞ2m
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8>><
>>:

9>>=
>>;. (7)

In Eq. (7), the term on the left hand side is the normal displacement of the tip, q̃ðsÞ. Denoting

asm ¼ aðsÞTðjðsÞ1m;j
ðsÞ
2m;j

ðsÞ
3mÞ

T, (8)

then Eq. (7) becomes

XN

m¼1

asmbm ¼ q̃ðsÞ or Ab ¼ q̃, (9)

where A is a N�N matrix with asm being the normal displacement of the sth tip in the mth tuned mode. From
Eqs. (9) and (5), b can be expressed as

b ¼ A�1q̃ ¼ A�1H̃F̃. (10)

Using Eq. (10), b can be calculated for different excitation frequencies and orders. Particularly, for
excitation frequencies, o1 and o2, and for a number of, N, order excitations defined by

F̃j ¼ ðe
irja1 ; eirja2 ; . . . ; eirjaN Þ

T, (11)

where j ¼ 1,2,y,N and rj are excitation orders, two N�N matrices are produced following Eq. (10)

B1 ¼ A�1H̃ðo1Þ½F̃1; F̃2; . . . ; F̃N �, (12a)

B2 ¼ A�1H̃ðo2Þ½F̃1; F̃2; . . . ; F̃N �. (12b)

If the global force vector corresponding to F̃j is denoted by Q̃j, then Eq. (3) gives

½�o2
1ðM

� þUTDMUÞ þ ðK� þUTDKUÞ�B1 ¼ UT½Q̃1; Q̃2; . . . ; Q̃N �, (13a)

½�o2
2ðM

� þUTDMUÞ þ ðK� þUTDKUÞ�B2 ¼ UT½Q̃1; Q̃2; . . . ; Q̃N �, (13b)

from which UTDMU and UTDKU can be determined:

UTDMU ¼ �M� þ
1

o2
2 � o2

1

UTf½Q̃1; Q̃2; . . . ; Q̃N �ðB
�1
1 � B�12 Þg, (14a)

UTDKU ¼ �K� þ
1

o2
2 � o2

1

UTf½Q̃1; Q̃2; . . . ; Q̃N �ðo
2
2B
�1
1 � o2

1B
�1
2 Þg. (14b)
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With the insertion of Eq. (12) into Eq. (14) yields

UTDMU ¼ �M� þ
1

o2
2 � o2

1

fUT½Q̃1; Q̃2; . . . ; Q̃N �g½F̃1; F̃2; . . . ; F̃N �
�1fH̃

�1
ðo1Þ � H̃

�1
ðo2ÞgA, (15a)
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1
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2H̃
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Being the global force vector corresponding to F̃j defined in Eq. (11), Q̃j may be expressed as
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According to Eq. (8),

uT
mQ̃j ¼ ða1m; a2m; . . . ; aNmÞF̃j. (18)

Thus

UT½Q̃1; Q̃2; . . . ; Q̃N � ¼ AT
½F̃1; F̃2; . . . ; F̃N �. (19)

Substitution of Eq. (19) into Eq. (15) gives

UTDMU ¼ �M� þ
1
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2 � o2

1
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ðo2ÞgA, (20a)
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Now let o1 ¼ o, o2 ¼ o+Do, then Eq. (20a) becomes

UTDMU ¼ �M� þ
1

ð2oþ DoÞDo
AT
fH̃
�1
ðoÞ � H̃

�1
ðoþ DoÞgA,

which gives the following equation after letting Do-0

UTDMU ¼ �M� �
1

2o
AT dH̃

�1
ðoÞ

do
A. (21a)

Similarly from Eq. (20b),

UTDKU ¼ �K� þ AT H̃
�1
ðoÞ �

o
2

dH̃
�1
ðoÞ

do

 !
A. (21b)

Eq. (21) gives an estimation of matrices UTDMU and UTDKU which, together with others, define the order-
reduced model for the mistuned wheel (see Eq. (3)). They are determined by the chosen tuned modes and the
tip-to-tip FRF matrix only. As shown in this equation, the estimated UTDMU and UTDKU are in general
dependant on frequency. Their dependences on the excitation frequency are explained by the fact that the
mistuned vibration is not exactly spanned by the chosen tuned modes. However, if

K̃ðoÞ ¼ ATH̃
�1
ðoÞA, (22)

can be expressed as

K̃ðoÞ ¼ C� o2D, (23)

where C and D are equivalent stiffness and mass matrices of order N�N, then Eq. (21) gives UTDMU and
UTDKU which are independent of frequency. Here K̃ðoÞ may be termed the equivalent dynamic stiffness

matrix.

2.3. Order response prediction

Using the identified model matrices given in Eq. (21), order responses of the mistuned wheel can be
predicted using Eqs. (3) and (2). It can be shown that Eq. (3) now becomes

½ATH̃
�1
ðoÞA�b ¼ UTQ̃, (24)

or

b ¼ ½A�1H̃ðoÞA�T�UTQ̃, (25)

and Eq. (2) gives

x ¼ U½A�1H̃ðoÞA�T�UTQ̃eiot. (26)

This is an estimation of the order response of the wheel. It can be seen from Eq. (24) that when the excitation
frequency satisfies

detðH̃
�1
ðoÞÞ ¼ 0 (27)

then resonance occurs. In other words, the natural frequencies of the mistuned wheel can be exactly recovered
from the identified model.

The accuracy of Eq. (26) is demonstrated in the following section. The accuracy of Eq. (26) may also be
indicated by the extent to which the equivalent dynamic stiffness defined in Eq. (22) can be approximated by
Eq. (23) in the frequency range containing the mistuned natural frequencies in the first family.

3. Results

The method proposed in previous sections is tested in this section by comparing order responses calculated
using this method (i.e. Eq. (26), the tip-to-tip frequency response functions are computed using the original
equation Eq. (1)) and those calculated directly from the original equation (i.e. Eq. (1)). Two bladed wheel
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models are examined; one is a lumped parameter model with 13 blades and the other is a finite element paddle
wheel model with 12 blades. Comparisons are presented here for the 6th order response only, since mistuning
effects are found to be more prominent for this order for wheels with 12 or 13 blades [25].

3.1. For a lumped parameter model

The lumped parameter model is shown in Fig. 3. The bladed wheel is modelled as a rigid disk connecting a
number, N (N ¼ 13), of 2-mass-4-spring systems representing the blades. The jth blade is represented by
masses maj and mbj and springs of stiffness kaj, kbj, kcj and kdj. The position of the jth blade is described by an
angle aj measured from a reference radius. The distances from maj and mbj to the disk centre are Ra and Rb,
respectively. A spring (not shown in the figure) of stiffness kej is present to couple the first stage mass, maj, of
the jth blade and that of the (j+1)th blade. The disk is described by mass M and inertial moment J. The disk is
subject to stiffness, kx and ky in the horizontal and vertical directions with kx ¼ ky ¼ k. The model has 4N+3
degrees of freedom. The tangential and radial displacements of maj relative to the disk are denoted by xaj and
yaj and those of mbj by xbj and ybj. Observed from the ground, the displacements of the mass centre of the disk
in the x- and y-directions are denoted by x and y and the rotation angle of the disk by y. Various acceleration
components (centrifugal acceleration and Coliolis acceleration, etc.) of, and forces (external forces are not
shown) applied by the springs on, mass msj (where s ¼ a,b) are depicted in Fig. A1 (see Appendix A). Based on
this figure, the differential equations of the model can be derived by applying Newton’s second law to all the
blade masses and to the disk for its translational motions, and the momentum moment law to the disk for its
rotational vibration. These differential equations are listed in Appendix A.

Now let

x ¼ ðx; y; y;xa1; ya1;xb1; yb1; xa2; ya2; xb2; yb2; . . . ; xaN ; yaN ;xbN ; ybN Þ
T. (28)

The equations of motion of the model can be written as

M €xþ Kx ¼ QðtÞ, (29)

where M is the mass matrix and K the stiffness matrix. Q(t) is the externally applied force vector. It is assumed
that in the nth order excitation, the blade masses, maj and mbj, are subject to forces, Pae

inajeiot and Pbe
inajeiot,

respectively, in the tangential direction. Thus QðtÞ ¼ Q̃eiot, where

Q̃ ¼ ð0; 0; 0..
.
Pae

ina1 ; 0;Pbe
ina1 ; 0..

.
Pae

ina2 ; 0;Pbe
ina2 ; 0..

.
� � � ..

.
Pae

inaN ; 0;Pbe
inaN ; 0ÞT. (30)

Used parameters for the tuned wheel are listed in Table 1. A loss factor of 0.005 has been estimated for all the
springs to account for material damping. Mistuning is generated from a normal distribution for the first stage
kaj

maj

mbj

kbj

kcj

kdj

kx

ky

y

Disk (M, J)

α j + θ

x

Fig. 3. A lumped parameter model.
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Table 1

Parameters for the tuned wheel.

Disk mass, M 0.078 kg

Disk inertia moment, J 0.0038 kgm2

Radii, Ra, Rb 0.21m, 0.22m

Disk stiffness, kx ¼ ky 4.556� 107N/m

Fist stage blade mass, ma 5.248� 10�4 kg

Second stage blade mass, mb ma/2

Fist stage tangential blade stiffness, ka 1� 106N/m

First stage radial blade stiffness, kb 5� ka

Second stage tangential blade stiffness, kc 0.5� ka

Second stage radial blade stiffness, kd 0.5� kb

Blade coupling stiffness, ke ka/10

Table 2

Parameters for the mistuned wheel.

Blade number Fist stage blade mass, ma

(� 10�4 kg)

Fist stage tangential blade

stiffness, ka (� 106N/m)

Blade coupling stiffness, ke

(� 105N/m)

1 5.166 1.051 1.090

2 4.406 1.169 1.073

3 5.383 1.059 1.058

4 4.694 0.936 1.000

5 5.991 1.038 1.068

6 4.825 0.899 1.057

7 5.525 0.998 0.974

8 5.363 0.995 0.962

9 4.764 1.000 0.970

10 4.109 0.968 0.852

11 5.217 1.110 0.977

12 4.718 0.813 1.012

13 5.570 1.043 1.031
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Fig. 4. Natural frequencies of the tuned (dot) and mistuned (star) wheels.
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blade mass, the first stage tangential blade stiffness and the blade coupling stiffness of each of 13 blades.
Distributions for all the random variables are independent of each other. The mean of each random variable is
equal to the corresponding tuned value and the standard deviation equal to 10 percent of the mean.
Parameters for the mistuned wheel are listed in Table 2.

Fig. 4 shows the natural frequencies of the tuned (dot) and mistuned (star) wheels. The first mode with a
vanishing natural frequency is a rigid mode in which the whole wheel rotates about its axis. The second and
third modes are associating with the wheel as a whole vibrating in the x and y directions. Other modes form a
pattern of four steps and the tuned modes (of ND numbers 0 to 6) in the first step form the first family of
modes. Mistuning does not change this ‘step’ pattern. The tip-to-tip frequency response matrix H̃ðoÞ of the
mistuned wheel consists of the tangential displacement, observed from the ground, of the second stage blade
mass due to a tangential unit force at the second stage mass of the same or other blades. To utilise Eq. (26) for
order response predictions, tuned modes in the first family, i.e. modes No. 4 to 16, are employed. The tuned
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Fig. 7. The 1st element in the equivalent dynamic stiffness matrix of the lumped parameter wheel model: —, real part; and – – –, imaginary

part.
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Fig. 8. The 6th order tangential displacement of the 1st mass of the 9th blade: —, Eq. (1); and – – –, Eq. (26).
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and mistuned natural frequencies and modal shapes of these modes are shown in Figs. 5 and 6. Fig. 5 shows
how the natural frequencies are changed from the tuned ones by mistuning. The modal shapes in Fig. 6 are
plotted in terms of the blade tip tangential displacements, with the maximum one being set to be unit. The
tuned modes and mistuned modes are significantly different. Vibration localisation (i.e. few neighbouring
blades have much greater displacements than others) is observed in the 15th and 16th modes of the mistuned
wheel. The first element in the equivalent dynamic stiffness matrix (see Eq. (22)) is shown in Fig. 7. From this
it can be concluded that, for frequencies higher than 8 kHz, Eq. (26) cannot be used to predict order responses.

The displacement amplitudes (relative to the disk) of the blade masses of the 9th blade under the 6th order
excitation, computed using either Eq. (26) or Eq. (1), is shown in Figs. 8–11. In the order excitation, blade
masses are subject to forces only in the tangential direction, as indicated in Eq. (30). The magnitudes of the
forces on the 1st and 2nd stage blade masses are 1 and 0.5N, respectively. It can be seen that, for frequencies
around the natural frequencies in the first family of modes of the mistuned wheel, the identified model gives an
accurate order response prediction, both in the tangential and radial directions, although the method is based
on frequency response functions in the tangential direction. It is particularly important that the maximum
2000 3000 4000 5000 6000 7000 8000 9000 10000
10-11

10-10

10-9

10-8

10-7

10-6

Frequency (Hz)

D
is

pl
ac

em
en

t (
y a

,m
)

Fig. 9. The 6th order radial displacement of the 1st mass of the 9th blade: —, Eq. (1); and – – –, Eq. (26).
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Fig. 10. The 6th order tangential displacement of the 2nd mass of the 9th blade: —, Eq. (1); and – – –, Eq. (26).
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Fig. 11. The 6th order radial displacement of the 2nd mass of the 9th blade: —, Eq. (1); and – – –, Eq. (26).
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Fig. 12. A paddle wheel and FE mesh in metres.
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order response of a blade can be accurately predicted using the identified model. At lower frequencies, the
prediction is still good for the tangential displacement. This is not true for the radial displacement. Figs. 9
and 11 show a peak at about 3500Hz. This corresponds to the second or third mode of the wheel in which the
wheel vibrates as a whole translationally on the disk springs. If the wheel is tuned, this mode will not be excited
by the 6th order excitation. The chosen tuned modes cannot represent this mode very well, although they
generate a peak at the same frequency.

3.2. For a finite element paddle wheel model

Two paddle wheels of 12 blades, one tuned and the other mistuned, are considered and the FE mesh is
shown in Fig. 12. The inner and outer radii of the disk are 1 and 1.9 cm. The length and width of each blade
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are 2.5 and 0.5 cm. There are five 8-noded elements on each blade. The middle nodes of the elements are
identified by A, B, C, D and E as shown in the figure.

For the tuned wheel, Young’s modulus is 91GPa, density is 2783 kg/m3 and Poisson ratio is 0.33. Since a
plane-strain FE program is used, Young’s modulus and Poisson ratio have been modified to be 85.5GPa and
0.248, so that a plane-stress solution is yielded from this FE analysis. For the mistuned wheel, material
properties are identical to those of the tuned wheel, except for Young’s modulus of the blades; Young’s
modulus of blade 1–12, is, respectively, 86.53, 90.00, 94.00, 71.90, 84.73, 79.58, 76.65, 74.86, 87.87, 81.73,
85.88 and 82.26GPa (Fig. 13). They are produced from a normal distribution with the mean being 85.5GPa
and the standard deviation being 10 percent of the mean. A loss factor of 0.005 is used for material damping.

The tip-to-tip frequency response matrix H̃ðoÞ of the mistuned wheel consists of the tangential (i.e. normal
to the blade) displacement of node E on a blade due to a tangential unit force at node E of the same or other
blades. In an order excitation, each of nodes A to E is applied a unit force in the tangential direction and these
five forces are in-phase. Equivalent nodes on other blades are also forced during an order excitation, but with
different phases, as described in Eq. (4).
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Fig. 14 shows the natural frequencies of the tuned (dot) and mistuned (star) wheels of the first family
of modes (modes 4–15. The first three modes are rigid body modes). A huge variation is seen between
the natural frequencies of this family (the natural frequency of the 15th mode is much higher than other
natural frequencies). Fig. 15 displays the modal shapes in terms of the blade tip (i.e. node E) tangential
displacements with the maximum displacement being set to be unit. Vibration localisation is observed in the
10th and 12th modes of the mistuned wheel. The tangential displacement amplitudes of nodes A and E on
blade 9 of the mistuned wheel under the 6th order excitation, computed using either Eq. (1) or (26) is shown in
Figs. 16 and 17. It can be seen that, the identified model gives an excellent order response prediction for the
frequency range spanned by the mistuned natural frequencies of the family.

4. Conclusions

A method is presented in this paper for model identification and order response prediction for mistuned,
bladed wheels. This method makes use of measured blade tip-to-blade tip frequency response functions of a
mistuned wheel and assumes responses of the wheel subject to order excitations to be a weighted sum of a
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Fig. 16. The 6th order tangential displacement of node A on blade 9: —, Eq. (1); and – – –, Eq. (26).
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Fig. 17. The 6th order tangential displacement of node E on blade 9: —, Eq. (1); and – – –, Eq. (26).
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number, which is equal to the number of the blades, of modes of the corresponding tuned wheel. Order-
reduced model for a mistuned wheel is identified in terms of the scale-reduced mass and stiffness matrices from
which an expression for order responses is derived. This method is especially suitable for small radial
turbocharger turbine wheels.

Order responses of a 10 percent mistuned, lumped parameter wheel model and a 10 percent mistuned, finite
element wheel model are calculated using this method and compared with those calculated from the original
equation. It is shown that, at and around the natural frequencies of the first family of modes, order responses
can be accurately predicted using the proposed method.
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Appendix A. Differential equations of motion of the lumped parameter wheel model

The differential equations of motion of the model shown in Fig. A1 are as follows.
For the disk

M €xþ kxþ
XN

j¼1

kajxaj sin aj

 !
�

XN

j¼1

kbjyaj cos aj

 !
¼ 0, (A.1)

M €yþ ky�
XN

j¼1

kajxaj cos aj

 !
�

XN

j¼1

kbjyaj sin aj

 !
¼ 0, (A.2)

J €y� Ra

XN

j¼1

kajxaj ¼ 0. (A.3)

For masses maj and mbj (j ¼ 1,2,y,N) (terms with orders higher than one are neglected)

� ðmaj sin ajÞ €xþ ðmaj cos ajÞ €yþmajRa
€yþmaj €xaj

� ke;j�1 cos
2 p

N

h i
xa;j�1 þ ke;j�1 sin

p
N

cos
p
N

h i
ya;j�1

þ kaj þ kcj þ ðkej þ ke;j�1Þ cos
2 p

N

h i
xaj � ðkej � ke;j�1Þ sin

p
N

cos
p
N

h i
yaj

� kcjxbj � kej cos
2 p

N

h i
xa;jþ1 � kej sin

p
N

cos
p
N

h i
ya;jþ1 ¼ Pae

inaje
iot

, (A.4)
(a)

(b)

(c)

(d)

Fig. A1. (a) Accelerations of mass msj; (b) forces applied on the disk; (c) forces on mass maj; and (d) forces on mass mbj.
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ðmaj cos ajÞ €xþ ðmaj sin ajÞ €yþmaj €yaj � ke;j�1 sin
p
N

cos
p
N

h i
xa;j�1

þ ke;j�1 sin
2 p

N

h i
ya;j�1 þ ðke;j�1 � kejÞ sin

p
N

cos
p
N

h i
xaj

þ kbj þ kdj þ ðkej þ ke;j�1Þ sin
2 p

N

h i
yaj

� kdjybj þ kej sin
p
N

cos
p
N

h i
xa;jþ1 þ kej sin

2 p
N

h i
ya;jþ1 ¼ 0, (A.5)

�ðmbj sin ajÞ €xþ ðmbj cos ajÞ €yþmbjRb
€yþmbj €xbj � kcjxaj þ kcjxbj ¼ Pae

inaje
iot

, (A.6)

ðmbj cos ajÞ €xþ ðmbj sin ajÞ €yþmbj €ybj � kdjyaj þ kdjybj ¼ 0. (A.7)
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